90plus 納米粒度儀應用案例
文獻名:Influence of nanotube preparation in Aquatic Bioassays
作者:Alan J. Kennedy1,*, Jonas C. Gunter2, Mark A. Chappell1, Jennifer D. Goss3, Matthew S. Hull4, Robert A. Kirgan1 and Jeffery A. Steevens2
1U.S. Army Engineer Research and Development Center, Environmental Laboratory, 3909 Halls Ferry Road, Vicksburg, Mississippi 39180
2Luna Innovations, 3157 State Street, Blacksburg, Virginia 24060, USA
3Spec Pro, 3909 Halls Ferry Road, Vicksburg, Mississippi 39180, USA
4Virginia Polytechnic Institute and State University, Department of Civil and Environmental Engineering, 418 Durham Hall, Blacksburg, Virginia 24061, USA
摘要:Knowledge gaps in nanomaterial fate and toxicity currently limit the ability of risk assessments to characterize the environmental implications of nanomaterials. This problem is further complicated by the lack of standardized characterization and preparation methodologies for researchers to gain the needed information to assist risk assessors. In the present study, data were generated to determine if multiwalled nanotube (MWNT) fate and toxicity are altered by engineered surface modifications or by different dispersal methods. While dissolved organic matter was a good dispersing agent of MWNTs in water, the humic acid fraction was a more effective dispersant than the fulvic acid fraction. When stabilized in organic matter, the functional group attached to the MWNT controlled its toxicity. Underivatized MWNTs induced relatively moderate toxicity to Ceriodaphnia dubia after 96 h (25 ± 19% survival at 26 mg/L), while hydrophilic groups (hydroxyl, carboxyl) reduced this toxicity (93 ± 12% survival at 48 mg/L). However, other functional groups (alkyl, amine) increased toxicity (0 ± 0% survival at <15 mg/L). In dispersal method studies, sonication of MWNTs increased fragmentation relative to magnetic stirring. The sonication treatment of MWNTs also slightly reduced the mortality of C. dubia in the water column but increased toxicity in the sediment to Leptocheirus plumulosus and Hyalella azteca. Findings in the present study indicate that nanotubes engineered for specific applications need to be managed independently and that laboratory methods to disperse and test nanotubes in bioassays need to be standardized to obtain repeatable results for comparison of materials.
關(guān)鍵詞:Nanotube; Toxicity; Ceriodaphnia; Leptocheirus; Hyalella
相關(guān)產(chǎn)品
免責聲明
- 凡本網(wǎng)注明“來源:化工儀器網(wǎng)”的所有作品,均為浙江興旺寶明通網(wǎng)絡(luò)有限公司-化工儀器網(wǎng)合法擁有版權(quán)或有權(quán)使用的作品,未經(jīng)本網(wǎng)授權(quán)不得轉(zhuǎn)載、摘編或利用其它方式使用上述作品。已經(jīng)本網(wǎng)授權(quán)使用作品的,應在授權(quán)范圍內(nèi)使用,并注明“來源:化工儀器網(wǎng)”。違反上述聲明者,本網(wǎng)將追究其相關(guān)法律責任。
- 本網(wǎng)轉(zhuǎn)載并注明自其他來源(非化工儀器網(wǎng))的作品,目的在于傳遞更多信息,并不代表本網(wǎng)贊同其觀點和對其真實性負責,不承擔此類作品侵權(quán)行為的直接責任及連帶責任。其他媒體、網(wǎng)站或個人從本網(wǎng)轉(zhuǎn)載時,必須保留本網(wǎng)注明的作品第一來源,并自負版權(quán)等法律責任。
- 如涉及作品內(nèi)容、版權(quán)等問題,請在作品發(fā)表之日起一周內(nèi)與本網(wǎng)聯(lián)系,否則視為放棄相關(guān)權(quán)利。