平面度在線測量的數(shù)學(xué)模型與誤差分離方法
對于平面度在線測量,可以采用四測頭電容式組合傳感器裝置安裝在加工機床的z軸上,按一定的測量走點路徑對工件表面進行測量,測量結(jié)果中迭加了兩項誤差:基準誤差(即導(dǎo)軌運動副誤差)和工件表面誤差。因此,要測量工件平面度,必須采用誤差分離技術(shù)。
對平面度在線測量可以采用三或四傳感器進行。其中三傳感器布置方式如圖1所示。傳感器邊距為L,這樣以 L長為間隔可將被測平面分為M行N列網(wǎng)格,處于網(wǎng)格上的點即為被測量點,三傳感器分別標記為(k,l)(k,l=1,2),對應(yīng)第i行j列上的測量點標記為(i,j)。以傳感器(l,l)的零點作為基準點。則傳感器(1,2)、(2,1)的初始位置偏差分別記為)Δ12、Δ21。
圖2所示為測量路線圖(這里以4行4列測點為例),網(wǎng)格上的點為測量點,實心小圓圈表示測頭,i、j表示測量的當前行和列。
圖3所示為傳感器采集數(shù)據(jù)示意圖。這里假設(shè)測頭裝置為一剛體,導(dǎo)軌運動副作無偏擺的平動。
由圖3給出的當前測量i行j列時的采集數(shù)據(jù)示意圖可以得到傳感器采樣表達式,記傳感器(k,l)(k,l=1,2)在該位置時的采樣值為 zijkl,則:
2 測量誤差源分析及實用誤差分離方法的討論
對于平面度形狀誤差的誤差分離方法,可以采用遞推逐次兩點(TSTP)法和zui小二乘逐次兩點(LSSTP)法。對于大型精密、超精密平面度在線測量,則應(yīng)采用混合逐次兩點(HSTP)法,對于精密小平面工件,采用二維zui小二乘插值逐次兩點(LSISTP)法進行誤差分離,
2.1測量誤差源分析
逐次兩點誤差分離方法是以采樣公式(1)為分析處理基礎(chǔ)的,但在實際系統(tǒng)中,由于各種因素的影響,采樣獲得的傳感器信息中不僅包含運動副誤差和測量平面形狀誤差,而且還帶有各種噪聲信號。理論分析和實驗研究情況表明,影響采樣數(shù)據(jù)的誤差源很多,如漂移誤差、隨機噪聲誤差、采樣量化誤差、擺角誤差、各種低頻振動、導(dǎo)軌運動不平穩(wěn)等。對于大型 CNC超精密平面磨床而言,影響在線測量系統(tǒng)精度的因素主要有以下,幾項:漂移誤差、隨機噪聲誤差、傳感器電源及導(dǎo)軌氣源波動、機床振動。
由于環(huán)境條件等的緩慢變化引起傳感器中頻漂移,尤其對于大工件測量時所需時間較長,漂移誤差的影響更大。但理論研究及分析表明:若傳感器漂移曲線相同,則漂移誤差影響可以通過分離處理消除,這樣在設(shè)計制作傳感器時盡量保證傳感器的特性相近,則環(huán)境變化對傳感器的影響基本相同,漂移誤差的影響得到抑制。
在線測量的環(huán)境不能算太好,采樣測量中不可避免存在各種各樣的干擾,‘如振動、電磁干擾、導(dǎo)軌運動的不平穩(wěn)、傳感器電路不穩(wěn)定等等,都會使得采樣值中存在隨機噪聲誤差。通過幾種算法處理過程可以發(fā)現(xiàn):采用zui小二乘處理進行誤差分離的辦法可以減少隨機噪聲的影響。
傳感器電源紋波、導(dǎo)軌氣源波動和機床振動都會對傳感器采樣值產(chǎn)生影響,因此需要分別采取措施減少影響。另一方面,由于其作用對幾個傳感器是相同的,因此誤差分離處理時,它們只影響導(dǎo)軌分離精度,而對工件表面分離結(jié)果沒有影響。
2.2 實用誤差分離方法的討論
對于平面度形狀誤差在線測量,可以采用TSTP法、LSSTP法、HSTP法、ILSSTP法等。其中TSTP法具有處理過程簡單、速度快的特點,但該方法的分離結(jié)果容易積累測量噪聲誤差,特別是大型工件在線測量的場合,分離精度較低:LSSTP法則可以抑制隨機噪聲的影響,得到更高精度的測量結(jié)果,該方法將多項誤差通過一次處理得到,這樣可能因為誤差均化而導(dǎo)致分離結(jié)果不準確。對于大型平面測量,由于處理矩陣太大而使得算法實現(xiàn)非常困難且可能導(dǎo)致浮點運算誤差。HSTP法實現(xiàn)了單項誤差分離處理,它以TSTP方法得到的結(jié)果作為初始值通過共軛梯度法迭代逼近可以實現(xiàn)大型平面快速的誤差分離。該方法避免了LSSTP方法可能產(chǎn)生的誤差均化及浮點運算誤差p大型超精密平面度測量采用該方法zui為合適。這三種方法的測量間隔等于測頭間距而不能變更,這樣對于中小型平面測量會導(dǎo)致測量結(jié)果不夠。ILSSTP法可以實現(xiàn)以小于測頭間距的間隔進行測量并抑制隨機噪聲的影響,當測量點較多時也可以采用共軛梯度迭代逼近的辦法得到的分離結(jié)果。作為ILSSTP法的特例,對于直線度在線測量同樣可以通過zui小二乘處理得到高精度分離結(jié)果。
3 平面度評價方法
目前對平面度的評估主要有四種方法:方格法、對角線法、zui小二乘法和zui小包容區(qū)域法。前兩種方法處理比較簡單,在工程現(xiàn)場上應(yīng)用較多,但其結(jié)果存在偏差。zui小二乘法也是一種簡單快捷的近似評估方法,易于計算機編程實現(xiàn),其評估結(jié)果誤差相對較小。zui小區(qū)域法符合國標規(guī)定的zui小條件原則,其評估結(jié)果*且比前幾種方法都,故而zui受重視,其實現(xiàn)相對較為復(fù)雜,很多學(xué)者采用了各種不同算法來實現(xiàn)該方法。在進行zui小區(qū)域法實現(xiàn)時,各種文獻提供了數(shù)十種求解算法,常用的有基面旋轉(zhuǎn)法、坐標變換法、優(yōu)化法、特征點法和作圖法等,這些算法都有各自的優(yōu)點。但對于大型超精平面測量處理而言,數(shù)據(jù)點太多。對如此多的數(shù)據(jù)點進行反復(fù)處理,前面提供的算法效率都太低,處理時間太長。針對這種情況,我們提出了一種對數(shù)據(jù)預(yù)處理的計算機算法,大大提高了處理效率。
算法的主要思路是通過優(yōu)化搜索序列、通過置換法尋找特征點、用判別準則進行驗證、再循環(huán)搜索、直到得到滿足條件的特征點為止。為提高搜索速度,綜合幾種方法的優(yōu)點,采取了zui小二乘預(yù)處理、分組設(shè)定優(yōu)先順序、選定搜索方向等多條優(yōu)化措施。
4 補償加工方法
補償加工是利用計算機控制刀具(砂輪)運動來補償由于機床導(dǎo)軌及加工變形等造成的工件直線度、平面度誤差。
4.1 誤差補償曲線(曲面)
對工件實時測量與補償是非常困難的,因此補償加工采用誤差記憶控制方式,誤差曲線(面)來自上次加工后的工件表面測量結(jié)果。如圖4所示,設(shè) y(x)為通過多傳感器在線測量并經(jīng)過插值誤差分離處理獲得的工件直線度誤差曲線(如果僅對機床導(dǎo)軌形狀誤差進行補償,則 y(x)為導(dǎo)軌副誤差曲線), f(x)為要求磨削達到的導(dǎo)軌形狀曲線(在對精密機床、測量機導(dǎo)軌進行磨削加工時,為了磨削出高精度導(dǎo)軌,并實現(xiàn)要求的凹凸形狀控制,當要求磨削工件形狀為直線時,f(x)=0),Y(x)為要求控制砂輪進給的位移量,則可以通過下式求得 Y(x)。
Y(x)= So- k×[ f(x)- y(x)]
這里:So為磨削進刀深度,k為砂輪進給系統(tǒng)剛度、機床運動系統(tǒng)剛度及工件剛度等影響的修正系數(shù),該系數(shù)需要通過相應(yīng)的實驗研究得到。
平面誤差補償加工比導(dǎo)軌誤差補償加工相對要復(fù)雜一些,生成平面度誤差補償曲面的方法與生成直線度誤差補償曲線的方法相類似。磨削平面時,砂輪磨頭要沿工作臺作反復(fù)循環(huán)運動,這樣在兩種不同運動狀態(tài)下,對 k系數(shù)及誤差補償曲面是否需要調(diào)整及調(diào)整方法需要通過實驗研究確定。
4.2 大行程進給的實現(xiàn)
Z軸的位置控制策略因采用的微進給方式不同而不同,若微進給方式為壓電伸縮氣壓調(diào)節(jié)式,則由于粗動控制是通過Z軸電機驅(qū)動精密絲杠完成的,這樣在粗動和微動切換控制時,由粗動控制向微動方式切換時,粗動方式的停止特性則可能成為問題,此時需要通過實驗研究平滑穩(wěn)定的控制方式切換的實現(xiàn)方法。若微進給通過靜壓諧波傳動實現(xiàn),上述問題就不存在了,但為了實現(xiàn)高分辨率高精度進給,則需要對傳動系統(tǒng)的爬行特性和其它非線性特性加以注意并采取措施。
4.3 微量進給系統(tǒng)特性分析及補償加工方法研究
由于實現(xiàn)微量進給的電致伸縮元件、氣體減壓閥、氣體軸承多個環(huán)節(jié)的非線性和不確定性會給傳統(tǒng)控制方法獲得的控制結(jié)果帶來誤差。針對這一問題分為兩部分進行研究:
(1)微量進給控制系統(tǒng)的建立及動態(tài)特性分析;
(2)實際補償控制方法研究。
4.3.1微量進結(jié)系統(tǒng)的建立及動態(tài)持性分析
由于補償加工時,砂輪作旋轉(zhuǎn)運動以及其它各種干擾因素的影響,對砂輪位移量直接測量非常困難,傳感器的長期穩(wěn)定性和和精度也不易保證。因此在建立控制系統(tǒng)時,采用易于安裝且精度與穩(wěn)定性好的氣體壓力傳感器(測量精度<0.1%,年漂移<0.2%)檢測氣’體軸承進氣調(diào)節(jié)壓力變化進行半閉環(huán)控制,這樣一方面可以避免壓電晶體磁滯效應(yīng)的影響,另一方面采用合適控制策略通過’半閉環(huán)控制可以提高系統(tǒng)響應(yīng)速度。
在進行系統(tǒng)特性實驗前,首先對其物理模型進行分析,在此基礎(chǔ)上對各環(huán)節(jié)進行參數(shù)辨識,再對模型及參數(shù)進行優(yōu)化,以使跟蹤控制誤差達到zui小。主要完成的工作為:
a)測定靜態(tài)電壓位移曲線、氣壓位移曲線;
b)選擇線性段區(qū)域測定系統(tǒng)增益系數(shù);
c)理論分析各環(huán)節(jié)物理模型:
d)采用隨機噪聲序列或階躍響應(yīng)曲線建模并辨識模型參數(shù)。
實驗表明,供氣壓力—砂輪位移關(guān)系可近似表示為一帶純滯后的二階欠阻尼系統(tǒng),電壓—氣壓關(guān)系則由于氣體減壓閥進氣孔與泄氣孔不同而特性不同,采用階躍法獲得進氣和泄氣過程響應(yīng)曲線,再對其分別建模辨識。
其關(guān)系都可以表示為模型參數(shù)不同的純滯后一階慣性系統(tǒng)。
由于系統(tǒng)環(huán)節(jié)過程較多,造成系統(tǒng)模型經(jīng)過一段時間會產(chǎn)生一定漂移,這樣會影響控制質(zhì)量。為克服這一問題,在實際補償加工控制系統(tǒng)中設(shè)置兩種模態(tài):測試模態(tài)和控制調(diào)節(jié)模態(tài)。開始補償加工前系統(tǒng)處于測試模態(tài)下,施加階躍響應(yīng)信號測試系統(tǒng)模型和模型參數(shù)。然后進入控制調(diào)節(jié)模態(tài),由測試模態(tài)得到的系統(tǒng)模型修改控制器參數(shù),然后由此控制器對系統(tǒng)動態(tài)特性進行控制。由于系統(tǒng)的非線性特性,線性模型是一種近似模型,采用非線性建模方法可望得到更態(tài)模型。
4.3.2實際補償控制方法研究
應(yīng)用于大型超精密平面磨床的實際補償控制方法主要有以下幾點要求:可靠穩(wěn)定、快速、系統(tǒng)的魯棒性強。
為了提高系統(tǒng)的動態(tài)響應(yīng)速度,可以采用“前饋+PID”的控制方法,圖5給出的是該方法的控制系統(tǒng)框圖,圖中 F(s)前饋控制環(huán)節(jié), G1(s)為 PID控制環(huán)節(jié)??紤]進氣與泄氣時 G2(s)具有不同的傳遞函數(shù),相應(yīng)地,其前饋控制環(huán)節(jié)和 PID控制環(huán)節(jié)也不同。
理想情況下希望 Xo(s)=Xi(s),即系統(tǒng)實現(xiàn)*跟蹤,但為滿足*跟蹤,則要求系統(tǒng)模型己知且確定不變,這一點復(fù)雜控制系統(tǒng)不易滿足??疾?ldquo;電壓一氣壓”模型和“氣壓一位移”模型可知,影響系統(tǒng)動態(tài)響應(yīng)速度的主要環(huán)節(jié)為中間環(huán)節(jié) G2(s),因此對“電壓一氣壓”部分進行半閉環(huán)前饋控制就可以大大提高系統(tǒng)動態(tài)響應(yīng)速度。
閉環(huán)系統(tǒng)誤差傳遞函數(shù)為:
為了實現(xiàn)方便,采用速度前饋控制器(F(s)= as)實現(xiàn)前饋控制。施加階躍電壓信號大小為140V一220V,采用“前饋+PID”控制方法后系統(tǒng)階躍響應(yīng)上升時間減少為 O.25秒,下降時間減少為 O.5秒以內(nèi)。實驗表明,在1HZ頻域范圍內(nèi)系統(tǒng)幅頻特性良好,考慮超精密平面磨床導(dǎo)軌誤差較小(實際測量為 lμm/1000mm左右)且平滑緩慢變化,以上的幅頻特性*可以滿足實際需要。
用線性模型對驅(qū)動電源及壓電晶體模型進行辨識,結(jié)果表明其動態(tài)特性表現(xiàn)為一帶延時效應(yīng)的一階慣性環(huán)節(jié):
一般認為靜承為一高階模型,其模型結(jié)構(gòu)可參考有關(guān)文獻,從目前掌握的資料來看,對于這種調(diào)節(jié)供氣壓力式的空氣靜承,其動態(tài)模型尚未進行研究。由于氣體壓力數(shù)字調(diào)節(jié)不易實現(xiàn),對其模型直接進行辨識存在一定困難。實際實驗中,將整個系統(tǒng)連接起來,通過驅(qū)動壓電晶體調(diào)節(jié)進氣腔氣體壓力,就得到整個系統(tǒng)階躍響應(yīng)曲線。
徐州亞名儀器儀表有限公司 轉(zhuǎn)載
相關(guān)產(chǎn)品
免責聲明
- 凡本網(wǎng)注明“來源:化工儀器網(wǎng)”的所有作品,均為浙江興旺寶明通網(wǎng)絡(luò)有限公司-化工儀器網(wǎng)合法擁有版權(quán)或有權(quán)使用的作品,未經(jīng)本網(wǎng)授權(quán)不得轉(zhuǎn)載、摘編或利用其它方式使用上述作品。已經(jīng)本網(wǎng)授權(quán)使用作品的,應(yīng)在授權(quán)范圍內(nèi)使用,并注明“來源:化工儀器網(wǎng)”。違反上述聲明者,本網(wǎng)將追究其相關(guān)法律責任。
- 本網(wǎng)轉(zhuǎn)載并注明自其他來源(非化工儀器網(wǎng))的作品,目的在于傳遞更多信息,并不代表本網(wǎng)贊同其觀點和對其真實性負責,不承擔此類作品侵權(quán)行為的直接責任及連帶責任。其他媒體、網(wǎng)站或個人從本網(wǎng)轉(zhuǎn)載時,必須保留本網(wǎng)注明的作品第一來源,并自負版權(quán)等法律責任。
- 如涉及作品內(nèi)容、版權(quán)等問題,請在作品發(fā)表之日起一周內(nèi)與本網(wǎng)聯(lián)系,否則視為放棄相關(guān)權(quán)利。