亚洲一二三四五区电影,最近中文字幕免费视频一,久久99精品久久久学生,午夜精品久久久久久久99av

產(chǎn)品推薦:氣相|液相|光譜|質(zhì)譜|電化學(xué)|元素分析|水分測(cè)定儀|樣品前處理|試驗(yàn)機(jī)|培養(yǎng)箱


化工儀器網(wǎng)>技術(shù)中心>解決方案>正文

歡迎聯(lián)系我

有什么可以幫您? 在線咨詢

應(yīng)用案例 | 使用開(kāi)路傳感器系統(tǒng)研究溫度和濕度對(duì)N2O吸收譜和濃度的影響

來(lái)源:寧波海爾欣光電科技有限公司   2023年12月11日 11:22  

近日,來(lái)自山東師范大學(xué)物理與電子科學(xué)學(xué)院的聯(lián)合研究團(tuán)隊(duì)發(fā)表了一篇題為Effects of Temperature and Humidity on the Absorption Spectrum and Concentration of N2O Using an Open-Path Sensor System的研究論文。


Introduction

Since Chinas proposal of the carbon peak and carbon neutrality goals, the government and society have attached great importance to the problems of air pollution and global warming. Nitrous oxide (N2O) is among the six greenhouse gases under the Kyoto Protocol. N2O content is relatively low compared to carbon dioxide (CO2), but its global warming potential is about 310 times that of CO2. In addition, it is destructive to ozone (O3). There are many reasons for the changes in N2O concentrations in the atmosphere, which are partly due to anthropogenic activities, such as the widespread use of fertilizers in agricultural activities. The concentrations of other gases in the atmosphere, as well as the wind speed and direction, are all correlated with changes in N2O concentrations. At the macro level, temperature and humidity are also factors affecting the absorption coefficient of N2O gas. However, relatively few studies have been conducted on the specific effects of temperature and humidity on N2O gas, and analysis has also been lacking on the influence of temperature and humidity on the absorption spectrum and the concentration of N2O. Moreover, some uncertainty and variability remain in the observations of the relationship between N2O gas concentrations and temperature and humidity. The reasons for these discrepancies may be regional differences, differences in observation methods, and imperfections in data, which are all important bases for measuring the N2O concentration in atmospheric, medical, combustion, and agricultural processes. Thus, further research and exploration, combined with additional field observations and modeling experiments, can uncover the mechanism of temperature and humidity on the N2O concentration. Consequently, providing a scientific basis for this concentration is essential for reducing N2O emissions, controlling climate change, and promoting sustainable development and environmental protection.


簡(jiǎn)介

自中國(guó)提出“碳峰值”和“碳中和”目標(biāo)以來(lái),政府和社會(huì)對(duì)空氣污染和全球變暖問(wèn)題給予了極大關(guān)注。N2O是《京都議定書(shū)》下的六種溫室氣體之一。與二氧化碳(CO2)相比,N2O含量相對(duì)較低,但其全球變暖潛力約為CO2310倍。此外,它對(duì)臭氧(O3)具有破壞性。大氣中N2O濃度的變化有許多原因,部分原因是人類(lèi)活動(dòng)造成的,例如在農(nóng)業(yè)活動(dòng)中廣泛使用化肥。大氣中其他氣體的濃度以及風(fēng)速和風(fēng)向都與N2O濃度的變化相關(guān)。在宏觀水平上,溫度和濕度也是影響N2O氣體吸收系數(shù)的因素。然而,對(duì)溫度和濕度對(duì)N2O氣體具體影響的研究相對(duì)較少,對(duì)溫度和濕度對(duì)N2O吸收譜和濃度的影響分析也不足。此外,在N2O氣體濃度與溫度和濕度之間的關(guān)系觀察中仍存在一些不確定性和變異性。導(dǎo)致這些差異的原因可能是地區(qū)差異、觀測(cè)方法差異以及數(shù)據(jù)的不完善,這些都是測(cè)量大氣、醫(yī)療、燃燒和農(nóng)業(yè)過(guò)程中N2O濃度的重要基礎(chǔ)。因此,進(jìn)一步的研究和探索,結(jié)合更多的現(xiàn)場(chǎng)觀測(cè)和建模實(shí)驗(yàn),可以揭示溫度和濕度對(duì)N2O濃度的機(jī)制。因此,為減少N2O排放、控制氣候變化,促進(jìn)可持續(xù)發(fā)展和環(huán)境保護(hù)提供科學(xué)依據(jù)至關(guān)重要。


Experimental Details

Sensor Setup

Based on WMS technology and an open optical path, an open optical-path detection system for detecting N2O gas in the atmosphere was built. The schematic diagram is shown in Figure 1. The sensor system is composed of a light-source module, photoelectric Remote Sens. 2023, 15, 5390 4 of 11 detection module, and data processing module. The light-source module mainly consists of signal generation, a laser drive, QCL, and an indication light source. To effectively realize the tunable characteristics of laser emission wavelength, we designed the signal generator plate to generate a high-frequency sine wave signal with a frequency of 10 kHz to realize the modulation function and to generate a low-frequency sawtooth wave signal with a frequency of 10 Hz to realize the scanning function. The two signals are superimposed on the laser driver, controls the temperature and central emission wavelength of QCL and converts it into an injection current acting on the detection light source QCL so that the emission wavelength of QCL is in the tunable range of 2203.7–2204.1 cm?1.


實(shí)驗(yàn)細(xì)節(jié)

傳感器設(shè)置

基于波長(zhǎng)調(diào)制光譜學(xué)(WMS)技術(shù)和開(kāi)路光學(xué)路徑,建立了一種用于檢測(cè)大氣中N2O氣體的開(kāi)路光學(xué)路徑檢測(cè)系統(tǒng)。示意圖如圖1所示。該傳感器系統(tǒng)由光源模塊、光電檢測(cè)模塊和數(shù)據(jù)處理模塊組成。光源模塊主要包括信號(hào)生成、激光驅(qū)動(dòng)、量子級(jí)聯(lián)激光器(QCL)和指示光源。為了有效實(shí)現(xiàn)激光發(fā)射波長(zhǎng)的可調(diào)特性,我們?cè)O(shè)計(jì)了信號(hào)生成器板,生成頻率為10 kHz的高頻正弦波信號(hào)以實(shí)現(xiàn)調(diào)制功能,并生成頻率為10 Hz的低頻鋸齒波信號(hào)以實(shí)現(xiàn)掃描功能。這兩個(gè)信號(hào)疊加在激光驅(qū)動(dòng)器上,控制QCL的溫度和中心發(fā)射波長(zhǎng),并將其轉(zhuǎn)化為作用于檢測(cè)光源QCL的注入電流,使QCL的發(fā)射波長(zhǎng)處于2203.7–2204.1 cm-1的可調(diào)范圍內(nèi)。

Fig 1(1).png

Figure 1. Schematic diagram of N2O open optical sensor system.

項(xiàng)目使用的激光驅(qū)動(dòng)器是寧波海爾欣光電科技有限公司的QC750-TouchTM量子級(jí)聯(lián)激光屏顯驅(qū)動(dòng)器。

l集成電流及溫控驅(qū)動(dòng),功能完備;

l溫度控制驅(qū)動(dòng)采用非PWM式的連續(xù)電流輸出控制,大大延長(zhǎng)TEC器件的使用壽命;

l多種輸出安全保護(hù)機(jī)制,保護(hù)QCL使用安全:可調(diào)電流鉗制、輸出緩啟動(dòng)、過(guò)壓欠壓保護(hù)、超溫保護(hù)、繼電器短路輸出保護(hù);

l大電流軟鉗制功能,避免誤操作大電流損壞激光管;

lUI界面顯示便于用戶操作使用及數(shù)據(jù)觀測(cè);

l全自主研發(fā),集成度高,性價(jià)比高。

QC750-Touch™(1).jpg

QC750-TouchTM, Ningbo HealthyPhoton Technology, Co., Ltd.


Selection of N2O Transitions

To achieve effective detection of N2O gas molecules, we need to select the absorption line intensity and the emission central wavelength of the laser. First, combined with the HITRAN-2016 database, the wave number range of 2000–2250 cm?1 was selected to analyze the region of the absorption spectral line intensity of N2O, and then carbon monoxide (CO), carbon dioxide (CO2), and water (H2O) molecules were simulated and analyzed, as shown in Figure 2. Within this wave number range, the absorption spectra of CO2 were mainly distributed within the 2000–2081 cm?1 range, and the absorption spectra of CO gas were distributed within the 2025–2200 cm?1 wave number range. The absorption spectra of N2O gas were distributed before the 2020 cm?1 wave number range. The absorption spectra of N2O gas molecules were mainly distributed in the 2200–2250 cm?1 wave number range, and they were far from the absorption spectra of water vapor and other gases, reducing interference. At around 2203.7 cm?1 , the absorption spectra of N2O gas were the strongest. Therefore, we set the position of the N2O absorption line to 2203.7333 cm?1, which was used as the wave number of the QCL emission center. The corresponding spectral line intensity was 7.903 × 10?19 (cm?1 .mol?1 ). The central current and temperature of QCL were set at 330 mA and 36.0 ?C, respectively.


N2O躍遷的選擇

為了有效檢測(cè)N2O氣體分子,我們需要選擇吸收線強(qiáng)度和激光的發(fā)射中心波長(zhǎng)。首先,結(jié)合HITRAN-2016數(shù)據(jù)庫(kù),選擇了2000–2250 cm?1的波數(shù)范圍,以分析N2O吸收光譜線強(qiáng)度的區(qū)域,然后對(duì)一氧化碳(CO)、二氧化碳(CO2)和水(H2O)分子進(jìn)行了模擬和分析,如圖2所示。在這個(gè)波數(shù)范圍內(nèi),CO2的吸收光譜主要分布在2000–2081 cm?1范圍內(nèi),CO氣體的吸收光譜分布在2025–2200 cm?1波數(shù)范圍內(nèi)。H2O氣體的吸收光譜分布在2020 cm?1波數(shù)范圍之前。N2O氣體分子的吸收光譜主要分布在2200–2250 cm?1波數(shù)范圍內(nèi),遠(yuǎn)離水蒸氣和其他氣體的吸收光譜,減少了干擾。在2203.7 cm?1左右,N2O氣體的吸收光譜達(dá)到峰值。因此,我們將N2O吸收線的位置設(shè)置為2203.7333 cm?1,用作QCL發(fā)射中心的波數(shù)。相應(yīng)的光譜線強(qiáng)度為7.903 × 10?19cm?1·mol?1)。QCL的中心電流和溫度分別設(shè)置為330 mA和36.0 ℃。

Figure 2. The intensity distribution of absorption lines of N2O, CO, CO2, and H2O in the range of 2000–2250 cm?1.


Conclusions

In this study, we investigated the effects of temperature and humidity on the concentration of N2O and its absorption spectra using an open-path sensor system. By combining theoretical analysis and field monitoring, we first conducted monitoring of N2O in a campus environment, analyzing the effects of temperature on its concentration and absorption spectra. We discovered that the concentration of N2O would increase correspondingly with the increase in temperature. The influence of humidity on N2O concentration was monitored under the condition that the ambient temperature of the laboratory remained unchanged. The concentration of N2O was negatively correlated with humidity. The 2f and 1f signals under different temperature and humidity levels were extracted for analysis. We found that the higher the temperature, the smaller the peak value of the 2f and the 1f signals, which accords with the trend of the Gaussian function changing with temperature. Under different humidity conditions, the lower the humidity, the larger the 2f signal peak; the higher the humidity, the smaller the 2f signal. This study is of great significance for analyzing the relationship between N2O and environmental parameters such as temperature and humidity. We hope that our research findings can assist environmental agencies in formulating more effective environmental policies for different environments. In the future, we can use QCL to analyze the relationship between N2O and other environmental and gas parameters.


結(jié)論

在本研究中,我們利用開(kāi)路傳感器系統(tǒng)研究了溫度和濕度對(duì)N2O濃度及其吸收光譜的影響。通過(guò)理論分析和現(xiàn)場(chǎng)監(jiān)測(cè)相結(jié)合,我們首先在校園環(huán)境中進(jìn)行了N2O監(jiān)測(cè),分析了溫度對(duì)其濃度和吸收光譜的影響。我們發(fā)現(xiàn)隨著溫度升高,N2O濃度相應(yīng)增加。在實(shí)驗(yàn)室環(huán)境中,保持環(huán)境溫度不變的條件下監(jiān)測(cè)了濕度對(duì)N2O濃度的影響。N2O濃度與濕度呈負(fù)相關(guān)。在不同溫度和濕度水平下提取并分析了2f和1f信號(hào)。我們發(fā)現(xiàn)溫度越高,2f和1f信號(hào)的峰值越小,這與高斯函數(shù)隨溫度變化的趨勢(shì)相符。在不同濕度條件下,濕度越低,2f信號(hào)峰值越大;濕度越高,2f信號(hào)越小。這項(xiàng)研究對(duì)分析N2O與溫度、濕度等環(huán)境參數(shù)之間的關(guān)系具有重要意義。我們希望我們的研究結(jié)果能夠協(xié)助環(huán)境機(jī)構(gòu)為不同環(huán)境制定更有效的環(huán)境政策。未來(lái),我們可以利用QCL來(lái)分析N2O與其他環(huán)境和氣體參數(shù)之間的關(guān)系。


參考:

Effects of Temperature and Humidity on the Absorption Spectrum and Concentration of N2O Using an Open-Path Sensor System, Remote Sens. 2023, 15, 5390.


免責(zé)聲明

  • 凡本網(wǎng)注明“來(lái)源:化工儀器網(wǎng)”的所有作品,均為浙江興旺寶明通網(wǎng)絡(luò)有限公司-化工儀器網(wǎng)合法擁有版權(quán)或有權(quán)使用的作品,未經(jīng)本網(wǎng)授權(quán)不得轉(zhuǎn)載、摘編或利用其它方式使用上述作品。已經(jīng)本網(wǎng)授權(quán)使用作品的,應(yīng)在授權(quán)范圍內(nèi)使用,并注明“來(lái)源:化工儀器網(wǎng)”。違反上述聲明者,本網(wǎng)將追究其相關(guān)法律責(zé)任。
  • 本網(wǎng)轉(zhuǎn)載并注明自其他來(lái)源(非化工儀器網(wǎng))的作品,目的在于傳遞更多信息,并不代表本網(wǎng)贊同其觀點(diǎn)和對(duì)其真實(shí)性負(fù)責(zé),不承擔(dān)此類(lèi)作品侵權(quán)行為的直接責(zé)任及連帶責(zé)任。其他媒體、網(wǎng)站或個(gè)人從本網(wǎng)轉(zhuǎn)載時(shí),必須保留本網(wǎng)注明的作品第一來(lái)源,并自負(fù)版權(quán)等法律責(zé)任。
  • 如涉及作品內(nèi)容、版權(quán)等問(wèn)題,請(qǐng)?jiān)谧髌钒l(fā)表之日起一周內(nèi)與本網(wǎng)聯(lián)系,否則視為放棄相關(guān)權(quán)利。
企業(yè)未開(kāi)通此功能
詳詢客服 : 0571-87858618
柘城县| 安岳县| 卢湾区| 托克逊县| 从化市| 南溪县| 三门峡市| 巴中市| 孟村| 沂水县| 葵青区| 屏山县| 海晏县| 镇雄县| 治多县| 华安县| 东安县| 山西省| 武宣县| 紫金县| 宁晋县| 葫芦岛市| 资兴市| 塔河县| 东港市| 邹城市| 浑源县| 柘城县| 揭西县| 岐山县| 古丈县| 浮梁县| 喀什市| 民乐县| 咸阳市| 灵山县| 乌拉特后旗| 蕲春县| 祥云县| 浦北县| 建德市|