(細胞模量硬度))細胞外基質(zhì)軟硬度
纖維化疾病和腫瘤相關(guān)纖維化構(gòu)成了一個全球性的健康問題,共同導(dǎo)致巨大的發(fā)病率和死亡率。 大約每1人中就有8人患有纖維化相關(guān)疾病。 纖維化疾病包括廣泛的臨床疾病,包括系統(tǒng)性硬化癥、特發(fā)性肺纖維化、黃斑變性、慢性腎臟病、肝硬化和心臟纖維化。與組織損傷后起源的纖維性耳病類似,胰腺癌和肝細胞癌的腫瘤形成也會發(fā)生纖維化。
大約每1人中就有8人患有纖維化相關(guān)疾病。
盡管臨床表現(xiàn)和致病機甲癥狀存在顯著差異,但這些疾病在受影響器官中具有類似的不受控制和進行性纖維化組織的積累,導(dǎo)致其功能障礙和衰竭。
最近的證據(jù)證實,細胞外基質(zhì)變硬 在纖維化的開始和進展中起重要作用。在組織纖維化期間,基質(zhì)硬度顯著增加。 例如,皮膚,肺和肝臟的硬度從穩(wěn)態(tài)中的0.5至1kPa增加到纖維化實驗?zāi)P椭?/span>的25-100kPa。 此外,對組織損傷或腫瘤的反應(yīng)是心 肌變硬促進肌成纖維細胞(成纖維細胞的活化形式)的機甲無激活,肌成纖維細胞負責(zé)用無功能的纖維化組織替換正常組織。
*組織修復(fù)和纖維化研究揭示了機甲環(huán)境如何在正常、受傷、修復(fù)和纖維化組織中形成。 光學(xué)11 生命 納米壓痕儀是表征纖維化組織的強大方法。設(shè)備可以識別組織結(jié)構(gòu)特征的改變和診斷疾病的早期跡象。將這些見解轉(zhuǎn)化為臨床和治療干預(yù)措施可以實現(xiàn)治療纖維化組織重塑的新方法。
PAVONE
高通量細胞力學(xué)測試平臺
結(jié)合在線培養(yǎng)以及成像功能
關(guān)于Pavone
Pavone使研究人員能夠在接近生理條件下分析細胞和其他生物材料的結(jié)構(gòu)和功能特性。
可同時放置2個96孔板,Pavone允許高通量高含量篩選功能特性,包括細胞剛度、粘彈性、粘附、收縮、機械感應(yīng)等。
這一新平臺將微觀力學(xué)表征與光學(xué)成像和培養(yǎng)相結(jié)合,實現(xiàn)了快速方便的數(shù)據(jù)收集。
預(yù)先校準的光纖傳感器以及預(yù)先編程的實驗進程,使得該儀器可以真正節(jié)省時間,產(chǎn)生大量有意義的實驗結(jié)果。
核心優(yōu)勢
高通量壓痕
應(yīng)用方向
病理學(xué)
單細胞病理學(xué):研究癌細胞力學(xué)與基因表達之間的關(guān)系。癌癥是一種廣泛研究的疾病。
然而,機制和基因表達的相互作用,以及它們?nèi)绾斡绊懠膊∵M展,是一個相對較新的領(lǐng)域,許多問題尚待解決。
Pavone可以疊加單細胞力和熒光數(shù)據(jù),因此可以耦合力基因表達關(guān)系。
機械藥理學(xué)
單細胞機械藥理學(xué):研究細胞力學(xué)在疾病中的作用以及與藥物靶化合物的關(guān)系。
在藥理學(xué)中,機械生物學(xué)分析僅限于特定的應(yīng)用領(lǐng)域,如心臟病,盡管已證明其他領(lǐng)域(如炎癥和纖維化)中機械特性的相關(guān)性是相關(guān)的。
Pavone能夠篩選大型樣本集的機械特性,從而解開目前尚未發(fā)現(xiàn)的藥物干預(yù)的潛在線索。
生理學(xué)
單細胞生理學(xué):研究活細胞的功能特性。
隨著基因組篩查的日益普及,單細胞生理學(xué)領(lǐng)域在過去幾十年取得了很大進展。
為了全面理解單個細胞的功能方面,如干細胞分化或心肌細胞功能,力或機械特性可以用作讀取參數(shù)。
此外,它們可以使用Pavone和/或第三方設(shè)備的分析后測序與熒光耦合。
技術(shù)介紹
這種高通量納米壓痕平臺的設(shè)計考慮了機械生物學(xué)。直接力測量功能與模塊化成像和培養(yǎng)*集成,并可同時使用2塊96孔板。力測量使用Optics11 Life的基于光纖的MEMS傳感器進行,具有高精度、準度和低噪聲水平。
了解更多?
Read the Pavone Application note.
Check out our
resources page and learn all there is to know about the Pavone.
成像
根據(jù)感興趣的研究,如果需要,可以使用熒光、共焦或其他更專業(yè)的成像模式來擴展標準亮場和相位對比成像能力。這里的圖片顯示了Pavone對EGFP染色酵母細胞的熒光和相位對比成像的疊加。
機械特性
Pavone的操作是為了與生物工作流程相結(jié)合而量身定制的,提供了*自動化的查找接觸、壓痕和數(shù)據(jù)分析程序。此外,可采用拖放方式設(shè)計半自動事件序列,或以“連續(xù)"模式使用儀器,其中觸摸屏界面使研究人員能夠選擇要進行分析的細胞。
培養(yǎng)
默認情況下,Pavone包括溫度控制,使用多個加熱元件和*控制機制,以確保均勻穩(wěn)定地加熱到生理溫度。此外,還可以添加CO2和濕度控制模塊,以提供類似培養(yǎng)箱的條件。
Optics11 life公司Pavone細胞壓痕刺激Optics11 life公司Pavone細胞壓痕刺激
Optics11成立于2011年,是阿姆斯特丹自由大學(xué)(VU)的衍生組織。從那時起,這家初創(chuàng)公司的收入和員工持續(xù)增長,成為荷蘭發(fā)展最快的公司之一,并具有國際影響力。Optics11 Life提供功能強大的新型納米壓痕儀,與傳統(tǒng)的同類產(chǎn)品相比,使用方便、功能多樣、堅固耐用。主要用于測量復(fù)雜、不規(guī)則的生物材料,如單細胞、組織、水凝膠和涂層的機械性能。
Piuma Nanoindenter
生物組織、軟物質(zhì)材料力學(xué)性能測試的新方法
Piuma是功能強大的臺式儀器,可探索水凝膠、生理組織和生物工程材料的微觀機械特性。表征尺度從宏觀直至細胞。專為分析測試軟材料而設(shè)計,測量復(fù)雜和不規(guī)則材料在生理條件下的力學(xué)性能。杭州軒轅科技有限公司
主要優(yōu)勢
● 內(nèi)置攝像鏡頭,方便實時觀察樣品臺
● 實時分析計算測量結(jié)果,原始數(shù)據(jù)并將以文本文件存儲,方便任何時候?qū)隓ataviewer軟件進行復(fù)雜處理
● 探針經(jīng)過預(yù)先校準,即插即用。對于時間敏感的樣品確保了快速測量
● 光纖干涉MEMS技術(shù)能夠以無損的方式測量即使是最軟的材料,并保證分辨率。同時探針可以重復(fù)使用Piuma-PDMS膠體軟硬度模量納米壓痕Piuma-PDMS膠體軟硬度模量納米壓痕
技術(shù)參數(shù)
模量測試范圍 | 5 Pa - 1 GPa |
探頭懸臂剛度 | 0.025 - 200 N/m |
探頭尺寸(半徑) | 3 - 250 μm |
最大壓痕深度 | 100 μm |
傳感器最大容量 | 200 |
測試環(huán)境 | air, liquid (buffer/medium) |
粗調(diào)行程 | X*Y:12×12 mm Z:12 mm |
加載模式 | Displacement / Load* / Indentation* |
測試類型 | 準靜態(tài)(單點,矩陣) 蠕變,應(yīng)力松弛 DMA動態(tài)掃描 (E', E'', tanδ) |
動態(tài)掃描頻率*
| 0.1 - 10 Hz |
內(nèi)置擬合模型 | Young's Modulus (Hertz / Oliver-Pharr / JKR) |
*為可選升級配置
|
Fiber-On-Top 探頭
新型光纖干涉式懸臂梁探頭,利用干涉儀來監(jiān)測懸臂梁形變。
相較于原子力顯微鏡或傳統(tǒng)納米壓痕儀
創(chuàng)新型光纖探頭,彌補了傳統(tǒng)納米壓痕儀無法測試軟物質(zhì)的問題,也解決了AFM在力學(xué)測試中的波動大,操作困難、制樣嚴苛等常見缺陷。
● 背景噪音低:激光干涉儀抗干擾強于AFM反射光路
● 制樣更簡單:對樣品的粗糙度寬容度高于AFM
● 剛度選擇更準確:平行懸臂梁結(jié)構(gòu)有利于準確判別壓痕深度與壓電陶瓷位移比例關(guān)系,便于選擇合適剛度探頭來保證彈性形變關(guān)系的穩(wěn)定性,進而獲得重復(fù)率更高、準確性更好的數(shù)據(jù)
內(nèi)置分析軟件
● 借助功能強大而易于操作的軟件,用戶可以自由控制壓痕程序(載荷、位移等)。自動處理曲線的流程,可以獲得數(shù)據(jù)和結(jié)果的快速分析
● 原始參數(shù)完整txt導(dǎo)出,便于后續(xù)復(fù)雜處理的需要
● 利用Hertz接觸模型從加載部分計算彈性模量,與常用的Oliver&Pharr方法相比,更為適合生物組織和軟物質(zhì)材料特性
視頻介紹
近期文獻
年 份 | 期 刊 | 題 目 |
---|
2022 | Advanced Functional Materials | Engineering Vascular Self-Assembly by Controlled 3D-Printed Cell Placement |
2022 | Biomaterials | Hydrogels derived from decellularized liver tissue support the growth and differentiation of cholangiocyte organoids |
2021 | Biofabrication | 3D bioprinting of tissue units with mesenchymal stem cells, retaining their proliferative and differentiating potential, in polyphosphate-containing bio-ink |
2021 | nature communications | Janus 3D printed dynamic scaffolds for nanovibration-driven bone regeneration |
2020 | Environmental Science & Technology | Effect of Nonphosphorus Corrosion Inhibitors on Biofilm Pore Structure and Mechanical Properties |
2020 | Acta Biomaterialia | A multilayer micromechanical elastic modulus measuring method in ex vivo human aneurysmal abdominal aortas |