單細(xì)胞分離
瑞士Cytosurge公司單細(xì)胞分離—FluidFM OMNIUM,是將原子力系統(tǒng)、微流控系統(tǒng)、細(xì)胞培養(yǎng)系統(tǒng)為體的單細(xì)胞操作系統(tǒng)。主要功能包括單細(xì)胞注射、單細(xì)胞提取、單細(xì)胞分離、單細(xì)胞粘附力的測(cè)定、生物3D打印等。 FluidFM OMNIUM打開(kāi)了傳統(tǒng)單細(xì)胞實(shí)驗(yàn)手段無(wú)法觸及域的大門(mén)。突破了單細(xì)胞研究、藥物開(kāi)發(fā)、細(xì)胞系開(kāi)發(fā)中的障礙,讓細(xì)胞膜不再成為阻礙單細(xì)胞研究的壁壘。 單細(xì)胞分離FluidFM OMNIUM濃縮了FluidFM技術(shù)的全部精華,尤其是在自動(dòng)化程度和操作速度上的提高。它不僅保留了產(chǎn)品在生物學(xué)上的能力,更能夠?qū)⑦@些功能進(jìn)行組合來(lái)創(chuàng)造更加高效、便捷全新的試驗(yàn)方法。 |
應(yīng)用域:
FluidFM OMNIUM方便了單細(xì)胞水平的研究,尤其適合應(yīng)用于醫(yī)療、單細(xì)胞生物學(xué)、單細(xì)胞質(zhì)譜、單細(xì)胞基因編輯、藥物研發(fā)等域。
基本參數(shù):
- 單細(xì)胞水平的顯微注射、提取、分離以及細(xì)胞粘附力測(cè)定,全過(guò)程通過(guò)軟件設(shè)置自動(dòng)化完成;
- 全自動(dòng)進(jìn)行細(xì)胞核、細(xì)胞質(zhì)定位注射;
- 軟件自動(dòng)更換探針更換,無(wú)需手動(dòng)加載;
- 樣品臺(tái)移動(dòng)精度:XY軸不大于1 nm;Z軸不大于0.2nm;
- 探針力學(xué)控制:提供探針當(dāng)前壓力值并繪制曲線;
- 配置高靈敏度液體微流控系統(tǒng),流體壓力控制精度:±0.5 mbar;
設(shè)備點(diǎn):
進(jìn) | 體 無(wú)需購(gòu)買(mǎi) 額外設(shè)備 | 簡(jiǎn)易 輕點(diǎn)鼠標(biāo) | 可控 所有變量均可 通過(guò)軟件操縱 |
單細(xì)胞注射 無(wú)損注入的將不同類(lèi)型的物質(zhì)準(zhǔn)確注入到細(xì)胞質(zhì)或者細(xì)胞核。 每小時(shí)可注射>100個(gè)細(xì)胞。 | |
單細(xì)胞提取 提取后細(xì)胞仍可存活。 | |
細(xì)胞分離 無(wú)論懸浮或者貼壁細(xì)胞均可分離或者分選。整個(gè)過(guò)程對(duì)細(xì)胞無(wú)損傷。 | |
點(diǎn)打印 納米精度的高密度點(diǎn)打印能夠快速建立使用諸如蛋白、DNA等物質(zhì) 構(gòu)成生物感應(yīng)列陣。 | |
納米光刻技術(shù) 打印納米精度的各種生物分子所構(gòu)成的復(fù)雜圖案。 |
單細(xì)胞注射——快速、準(zhǔn)確、低損傷
更的CRISPR-Cas轉(zhuǎn)染方式: 能夠進(jìn)行高速、高效地將CRISPR-Cas復(fù)合物注入細(xì)胞,幫助您克服對(duì)于傳統(tǒng)方式難轉(zhuǎn)染的細(xì)胞基因編輯問(wèn)題。 | |
提高質(zhì)粒的轉(zhuǎn)染效率: 相比于傳統(tǒng)的轉(zhuǎn)染方式,F(xiàn)luidFM更加溫和、快速,對(duì)細(xì)胞的損傷更小。 | |
貼壁細(xì)胞均可注射: 對(duì)于注射細(xì)胞的種類(lèi),本產(chǎn)品并沒(méi)有太多的限制,即使像心肌細(xì)胞這樣的注射難度很高的細(xì)胞也能夠勝任。 | |
準(zhǔn)確注入體積計(jì)算: 通過(guò)比對(duì)注入熒光分子物質(zhì)的熒光強(qiáng)度準(zhǔn)確計(jì)算注入熒光分子的體積。 |
單細(xì)胞提取——微量、低創(chuàng)、準(zhǔn)確
活細(xì)胞提取 從活細(xì)胞中直接提取內(nèi)容物,并且提取后細(xì)胞仍可存活。 | |
電鏡成像 相比于傳統(tǒng)的裂解方式,F(xiàn)luidFM OMNIUM提取的樣本更為干凈,可以得到很好地電鏡圖像。 | |
mRNA、酶活力的檢測(cè) FluidFM OMNIUM提取的樣本也可以直接用于酶活力的測(cè)定或mRNA的檢測(cè)。 | |
單細(xì)胞質(zhì)譜分析 FluidFM OMNIUM提取樣本也可應(yīng)用于單細(xì)胞代謝組學(xué)樣本的質(zhì)譜分析。 |
單細(xì)胞分離——直觀、簡(jiǎn)單、低損
FluidFM® 氣呵成的細(xì)胞分離過(guò)程 使用FluidFM OMNIUM分離CHO細(xì)胞,僅僅點(diǎn)擊幾次鼠標(biāo),單個(gè)細(xì)胞便準(zhǔn)確的完成了轉(zhuǎn)移。 |
小樣本細(xì)胞群分離十分友好 對(duì)于細(xì)胞數(shù)不足以使用流式細(xì)胞儀分選時(shí),F(xiàn)luidFM OMNIUM很好的*。 |
測(cè)試數(shù)據(jù)
肝細(xì)胞的微量注射
HeLa細(xì)胞的微量提取
CHO細(xì)胞的單細(xì)胞分離
納米光刻DAPI染料
發(fā)表文章
單細(xì)胞注射:
1. O.Guillaume-Gentil, E.Potthoff, D.Ossola, et al. Force-controlled fluidic injection into single cell nuclei.(2013)Small,9(11),1904?1907. doi:10.1002/ smll.201202276A.
2. Meister, M. Gabi, P.Behr, et al. FluidFM: Combining atomic force microscopy and nanofluidics in a universal liquid delivery system for single cell applications and beyond.(2009) Nano Letters, 9(6), 2501?2507. doi:10.1021/nl901384x
單細(xì)胞提?。?/strong>
1. O. Guillaume-Gentil, T. Rey, P. Kiefer, A.J. Ibá?ez, R. Steinhoff, R. Br?nnimann, L. Dorwling-Carter, H. Zambelli, R. Zenobi & J.A. Vorholt. Single-Cell Mass Spectrometry of Metabolites Extracted from Live Cells by Fluidic Force Microscopy. (May 2017) Anal Chem., 89(9), 5017-5023. doi:10.1021/acs.analchem.7b00367
2. O. Guillaume-Gentil, R.V. Grindberg, R. Kooger, L. Dorwling-Carter, V. Martinez, D. Ossola, M. Pilhofer, T. Zambelli & J.A. Vorholt. Tunable Single-Cell Extraction for Molecular Analyses. (Jul 2016) Cell, 166(2), 506-516. doi: 10.1016/j. cell.2016.06.025.
單細(xì)胞分離:
1. O. Guillaume-Gentil, T. Zambelli & J.A. Vorholt.Isolation of single mammalian cells from adherent cultures by fluidic force microscopy. (2014) Lab on a chip, 14(2), 402-414. doi:10.1039/c3lc51174j
2. P. Stiefel, T. Zambelli & J.A. Vorholt. Isolation of optically targeted single bacteria by application of fluidic force microscopy to aerobic anoxygenic phototrophs from the phyllosphere. (2013) Applied and Environmental Microbiology, 79(16), 4895-4905. doi:10.1128/AEM.01087-13P.
3. D?rig, P. Stiefel, P. Behr, et al. Force-controlled spatial manipulation of viable mammalian cells and micro-organisms by means of FluidFM technology.(2010) Applied Physics Letters, 97(2), 023701 1-3. doi:10.1063/1.3462979
新發(fā)表:
2021
1. M. Mathelié-Guinlet, F. Viela, J. Dehullu, S. Filimova, J.M. Rauceo, P.N. Lipke & Y.F. Dufrêne. Single-cell fluidic force microscopy reveals stress-dependent molecular interactions in yeast mating. (2021) Commun Biol. doi: 10.1038/s42003-020-01498-9
AFM Series: Adhesion of single cells
2020
1. A.G. Nagy, A. Bonyár, I. Székács & R. Horvath. Analysis of single-cell force-spectroscopy data of Vero cells recorded by FluidFM BOT. (2020) IEEE 26th International Symposium for Design and Technology in Electronic Packaging (SIITME). doi: 10.1109/SIITME50350.2020.9292265, BIO Series: Adhesion of single cells
2. I. Demir, J. Blockx, E. Dague, P. Guiraud, W. Thielmans, K. Muylaert & C. Formosa-Dague. Nanoscale Evidence Unravels Microalgae Flocculation Mechanism Induced by Chitosan. (2020) ACS Applied Biomaterials. doi: 10.1021/acsabm.0c007722. AFM Series: Adhesion of single cells
3. P. Saha, T. Duanis-Assaf & M. Reches. Fundamentals and Applications of FluidFM Technology in Single-Cell Studies. (2020) Advanced Materials Interfaces. doi: 10.1002/admi.20001115. AFM Series: REVIEW
4. T. Schlotter, S. Weaver, C. Forró, D. Momotenko, J. Voros, T. Zambelli & M. Aramesh. Force-Controlled formation of dynamic nanopores for single-biomolecule sensing and single-cell secretomics. (2020) ACS Nano. doi: 10.1021/acs.nano.0c04281. AFM Series: SICM, other
5. L. Hofherr, C. Müller-Renno, C. Ziegler. FluidFM as a tool to study adhesion forces of bacteria - Optimization of parameters and comparison to conventional bacterial probe Scanning Force Spectroscopy. (2020). PLOS ONE. doi: 10.1371/journal.pone.0227395. AFM Series: Adhesion of single bacteria
6. T. Schlotter, S. Weaver, T. Zambelli, J. Voros & M. Aramesh. Force-controlled nanopores for single cell measurements using micro-channelled AFM Cantilevers. (2020). Biophysical Journal. doi: 10.1016/j.bpj.2019.11.1066. AFM Series: Other
7. J. Zhang, H. Yu, B. Harris, Y. Zheng, U. Celik, L. Na, R. Faller, X. Chen, D. R. Haudenschild, G. Liu. New Means to Control Molecular Assembly (2020) ACS Publications. doi.org/10.1021/acs.jpcc.9b11377. BIO Series: Nanolithography
8. P. Wysotzki, A. Sancho, J. Gimsa, J. Groll. A comparative analysis of detachment forces and energies in initial and mature cell-material interaction (2020) Science Direct. doi.org/10.1016/j.colsurfb.2020.110894. AFM Series: Single Force Spectroscopy
9. M. Sztilkovics, T. Gerecsei, B. Peter, A. Saftics, S. Kurunczi, I. Szekacs, B. Szabo & R. Horvath. Single-cell adhesion force kinetics of cell populations from combined label-free optical biosensor and robotic fluidic force microscopy. (2020) Scientific Reports. doi: 10.1038/s41598-019-56898-7. BIO Series: Adhesion of single cells
用戶單位
國(guó)內(nèi)用戶:
國(guó)外用戶: